Leadscope Enterprise model for carcinogenicity exclusively in rodent liver in vivo

1. QSAR identifier

1.1 QSAR identifier (title)

Leadscope Enterprise model for carcinogenicity exclusively in rodent liver in vivo, Danish QSAR Group at
DTU Food.

1.2 Other related models
MultiCASE CASE Ultra model for carcinogenicity exclusively in rodent liver in vivo, Danish QSAR Group at
DTU Food.

SciMatics SciQSAR model for carcinogenicity exclusively in rodent liver in vivo, Danish QSAR Group at DTU
Food.

1.3. Software coding the model

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.



2. General information

2.1 Date of QMRF
January 2015.

2.2 QMRF author(s) and contact details
QSAR Group at DTU Food,;

Danish National Food Institute at the Technical University of Denmark;

http://gsar.food.dtu.dk/;

gsar@food.dtu.dk

Sine Abildgaard Rosenberg;

National Food Institute at the Technical University of Denmark;

Trine Klein Reffstrup;

National Food Institute at the Technical University of Denmark;

Eva Bay Wedebye;

National Food Institute at the Technical University of Denmark;

Nikolai Georgiev Nikolov;

National Food Institute at the Technical University of Denmark;

Marianne Dybdahl;

National Food Institute at the Technical University of Denmark.

2.3 Date of QMRF update(s)

2.4 QMRF update(s)

2.5 Model developer(s) and contact details

Jay Russel Niemel3;



National Food Institute at the Technical University of Denmark;

Eva Bay Wedebye;

National Food Institute at the Technical University of Denmark;

Nikolai Georgiev Nikolov;

National Food Institute at the Technical University of Denmark;

Danish QSAR Group at DTU Food,;
National Food Institute at the Technical University of Denmark;

http://gsar.food.dtu.dk/;

gsar@food.dtu.dk

2.6 Date of model development and/or publication

January 2014,

2.7 Reference(s) to main scientific papers and/or software package

Roberts, G., Myatt, G. J., Johnson, W. P., Cross, K. P., and Blower, P. E. J. (2000) LeadScope: Software for
Exploring Large Sets of Screening Data. Chem. Inf. Comput. Sci., 40, 1302-1314.

Cross, K.P., Myatt, G., Yang, C., Fligner, M.A., Verducci, J.S., and Blower, P.E. Jr. (2003) Finding
Discriminating Structural Features by Reassembling Common Building Blocks. J. Med. Chem., 46, 4770-4775.

Valerio, L. G., Yang, C., Arvidson, K. B., and Kruhlak, N. L. (2010) A structural feature-based computational
approach for toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518.

2.8 Availability of information about the model

The training set is non-proprietary and was compiled in 2003 from the Cancer Potency Database (CPDB
1999). The model algorithm is proprietary from commercial software.

2.9 Availability of another QMRF for exactly the same model



3. Defining the endpoint

3.1 Species

Rodent (rat and mouse).

3.2 Endpoint
QMRF 4. Human Health Effects

QMRF 4.12. Carcinogenicity

3.3 Comment on endpoint

Data compiled from the Cancer Potency Database (CPDB 1999) were used to train this model. The CPDB is a
unique and widely used international resource currently holding the results of 6540 chronic, long-term
animal cancer tests on 1547 chemicals. The CPDB provides easy access to the bioassay literature, with
gualitative and quantitative analyses of both positive and negative experiments that have been published
over the past 50 years in the general literature through 2001 and by the National Cancer Institute/National
Toxicology Program (NCI/NTP) through 2004. The CPDB standardizes the diverse literature of cancer
bioassays that vary widely in protocol, histopathological examination and nomenclature, and in the
publishing author’s choices of what information to provide in their papers. Results are reported in the CPDB
for tests in rats, mice, hamsters, dogs, and nonhuman primates (CPDB 1999).

From the CPDB data for substances with organ specific tumour information from rodent (rat and/or mouse)
in vivo experiments were compiled. Chemicals causing tumours exclusively in the liver of rodents were
defined as positives. Chemicals that caused cancer not only in the liver but also in others of the investigated
organs were defined as negatives. Due to differences in liver metabolism, rat and mice are more sensitive
to certain mechanisms associated with cell proliferation compared to humans. This model is intended to
identify substances which are acting by these mechanisms and therefore may possibly not give the same
effects in humans.

3.4 Endpoint units

No units, 1 for positives and 0 for negatives.

3.5 Dependent variable

Carcinogenicity in rodent liver (exclusively), positive or negative.

3.6 Experimental protocol

For data to be included in the CPDB, experiments should meet a set of standard inclusion criteria. These
inclusion rules can be seen online at: http://toxnet.nIm.nih.gov/cpdb/methods.html#fsources. These
inclusion criteria for the CPDB were designed to identify reasonably thorough, chronic, long-term tests of
single chemical agents (whether positive or negative). The two sources of data are the bioassays of the
NCI/NTP and the general published literature. For NCI/NTP bioassay data the standard protocol from the
1970s is described in Sontag et al.(1976) and recommends that tests be conducted in two species of
rodents (rats and mice) with both sexes tested individually at the maximally tolerated dose (MTD) and half
that dose, using a control group and a vehicle control where appropriate. In the early 1990s the standard
number of dose groups was increased to 3, and the standard range of doses tested was 4-10 folds.




In order for experiments from the general literature to be included in the database a set of standard
inclusion criteria should be met.

For the data in CPDB the following should be noted: For any single chemical, the number of experiments in
the database may vary. Some chemicals have only one test in one sex of one species, while others have
multiple tests including both sexes of a few strains of rats and mice, possibly using quite different protocols.

3.7 Endpoint data quality and variability

Data for the training set originated from multiple sources and therefore some degree of variability is
expected. The inclusion rules (see 3.6) for CPDB reduces some of this variability in data.



4. Defining the algorithm

4.1 Type of model

A categorical (Q)SAR model based on structural features and numeric molecular descriptors.

4.2 Explicit algorithm

This is a categorical (Q)SAR model made by use of partial logistic regression (PLR). The specific
implementation is proprietary within the Leadscope software.

4.3 Descriptors in the model

structural features,

alLogP,

polar surface area,

number of hydrogen bond donors,
Lipinski score,

number of rotational bonds,
parent atom count,

parent molecular weight,

number of hydrogen bond acceptors

4.4 Descriptor selection

Leadscope Predictive Data Miner is a software program for systematic sub-structural analysis of a chemical
using predefined structural features stored in a template library, training set-dependent generated
structural features (scaffolds) and calculated molecular descriptors. The feature library contains
approximately 27,000 pre-defined structural features and the structural features chosen for the library are
motivated by those typically found in small molecules: aromatics, heterocycles, spacer groups, simple
substituents. Leadscope allows for the generation of training set-dependent structural features (scaffold
generation), and these features can be added to the pre-defined structural features from the library and be
included in the descriptor selection process. It is possible in Leadscope to remove redundant structural
features before the descriptor selection process and only use the remaining features in the descriptor
selection process. Besides the structural features Leadscope also calculates eight molecular descriptors for
each training set structure: the octanol/water partition coefficient (alogP), hydrogen bond acceptors (HBA),
hydrogen bond donors (HBD), Lipinski score, atom count, parent compound molecular weight, polar
surface area (PSA) and rotatable bonds. These eight molecular descriptors are also included in the
descriptor selection process.

Leadscope has a default automatic descriptor selection procedure. This procedure selects the top 30% of
the descriptors (structural features and molecular descriptors) according to X*-test for a binary variable, or



the top and bottom 15% descriptors according to t-test for a continuous variable. Leadscope treats numeric
property data as ordinal categorical data. If the input data is continuous such as ICsq or cLogP data, the user
can determine how values are assigned to categories: the number of categories and the cut-off values
between categories. (Roberts et a/.2000).

When developing this model, intermediate models with application of different modelling approaches in
Leadscope were tried:

1. ‘Single model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, and calculated
molecular descriptors for descriptor selection.

2. ‘Single model’ using both the Leadscope pre-defined structural features and the training set dependent
features (scaffolds generation) as well as the calculated molecular descriptors in the descriptor
selection.

3. ‘Single model’ using both Leadscope pre-defined structural features and the training set dependent
features (scaffolds generation), with subsequent removal of redundant structural features, and
calculated molecular descriptors for descriptor selection.

4. ‘Composite model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, and
calculated molecular descriptors in the descriptor selection.

5. ‘Composite model’ using both Leadscope pre-defined structural features and the training set
dependent features (scaffolds generation) as well as the calculated molecular descriptors in the
descriptor selection.

Based on model performance as measured by a preliminary cross-validation the model developed using
approach number 3. was chosen.

For this model scaffolds were generated by Leadscope for the training set structures and added to the
Leadscope library of structural features. The number of structural features was then reduced further using
the built-in filter to remove similar (reduntant) features (the “less similar” features removed). Descriptors
were then automatically selected among the remaining structural features and the eight molecular
descriptors.

4.5 Algorithm and descriptor generation

For descriptor generation see 4.4.

After selection of descriptors the Leadscope Predictive Data Miner program performs partial least squares
(PLS) regression for a continuous response variable, or partial logistic regression (PLR) for a binary response
variable, to build a predictive model. By default the Predictive Data Miner performs leave-one-out or leave-
groups-out (in the latter case, the user can specify any number of repetitions and percentage of structures
left out) cross-validation on the training set depending on the size of the training set. In the cross-validation
made by Leadscope the descriptors selected for the ‘mother model’ are used when building the validation
submodels and they therefore have a tendency to be overfittet and give overoptimistic validation results.

In this model, because of the categorical outcome in the response variable, PLR was used to build the
predictive model. For this model 172 descriptors were selected to build the model. These include 8
Leadscope calculated molecular descriptors, 105 hierarchy features, and 59 dynamic features. The 172
descriptors were distributed on 2 PLS factors.



4.6 Software name and version for descriptor generation

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.

4.7 Descriptors/chemicals ratio

In this model 172 descriptors were used and distributed on 2 PLS factors. The training set consists of 320
compounds. The descriptor/chemical ratio is 1:1.9 (172:320).



5. Defining Applicability Domain

5.1 Description of the applicability domain of the model

The definition of the applicability domain consists of two components; the definition of a structural domain
in Leadscope and the in-house further probability refinement algorithm on the output from Leadscope to
reach the final applicability domain call.

1. Leadscope

For assessing if a test compound is within the structural applicability domain of a given model Leadscope
examines whether the test compound bears enough structural resemblance to the training set compounds
used for building the model (i.e. a structural domain analysis). This is done by calculating the distance
between the test compound and all compounds in the training set (distance = 1 - similarity). The similarity
score is based on the Tanimoto method. The number of neighbours is defined as the number of compounds
in the training set that have a distance equal to or smaller than 0.7 with respect to the test compound. The
higher the number of neighbours, the more reliable the prediction for the test compound. Statistics of the
distances are also calculated. Effectively no predictions are made for test compounds which are not within
the structural domain of the model or for which the molecular descriptors could not be calculated in
Leadscope.

2. The Danish QSAR group

In addition to the general Leadscope structural applicability domain definition the Danish QSAR group has
applied a further requirement to the applicability domain of the model. That is only positive predictions
with a probability equal to or greater than 0.7 and negative predictions with probability equal to or less
than 0.3 are accepted. Predictions within the structural applicability domain but with probability between
0.5t0 0.7 or 0.3 to 0.5 are defined as positives out of applicability domain and negatives out of applicability
domain, respectively. When these predictions are weeded out the performance of the model in general
increases at the expense of reduced model coverage.

5.2 Method used to assess the applicability domain

Leadscope does not generate predictions for test compounds which are not within the structural domain of
the model or for which the molecular descriptors could not be calculated.

Only positive predictions with probability equal to or greater than 0.7 and negative predictions with
probability equal to or less than 0.3 are accepted.

5.3 Software name and version for applicability domain assessment

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.

5.4 Limits of applicability

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing which is
applicable for all the in-house QSAR software, i.e. not only Leadscope. According to this definition accepted
structures are organic substances with an unambiguous structure, i.e. so-called discrete organics defined
as: organic compounds with a defined two dimensional (2D) structure containing at least two carbon
atoms, only certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and |), and not mixtures with two
or more ‘big components’ when analyzed for ionic bonds (for a number of small known organic ions
assumed not to affect toxicity the ‘parent molecule’ is accepted). Calculation 2D structures (SMILES and/or



SDF) are generated by stripping off ions (of the accepted list given above). Thus, all the training set and
prediction set chemicals are used in their non-ionized form. See 5.1 for further applicability domain
definition.
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6. Internal validation

6.1 Availability of the training set

Yes

6.2 Available information for the training set

CAS

SMILES

6.3 Data for each descriptor variable for the training set

No

6.4 Data for the dependent variable for the training set

All

6.5 Other information about the training set

320 compounds are in the training set: 109 positives and 211 negatives.

6.6 Pre-processing of data before modelling

From (CPDB 1999) substances with organ specific tumour information from rodent in vivo experiments
were compiled. For 626 structure information in the form of SMILES were available. Of these, 109
chemicals exclusively caused tumours in the liver and these were defined as positives. Chemicals causing
tumours in the liver as well as in other organs were defined as ‘negative’. To balance the model so that the
ratio of negatives to positives was not too high a random selection was made among them giving a total of
211 negatives. The total number of substances in the training set was therefore 320. The remaining 306
negatives were originally used in an external validation which has not yet been repeated for this new
version of the model (originally in MC4PC: 182 of the negatives were within AD giving a specificity of
86.3%).

6.7 Statistics for goodness-of-fit

Not performed.

6.8 Robustness — Statistics obtained by leave-one-out cross-validation

Not performed. (It is not a preferred measurement for evaluating large models).

6.9 Robustness — Statistics obtained by leave-many-out cross-validation

A five times two-fold 50 % cross-validation was performed. This was done by randomly removing 50% of
the full training set used to make the “mother model”, where the 50% contains the same ratio of positive
and negatives as the full training set. A new model (validation submodel) was created on the remaining
50% using the same settings in Leadscope but with no information from the “mother model” regarding
descriptor selection etc. The validation submodel was applied to predict the removed 50% (within the
defined applicability domain for the submodel). Likewise, a validation submodel was made on the removed
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50% of the training set and this model was used to predict the other 50% (within the defined applicability
domain for this submodel). This procedure was repeated five times.

Predictions within the defined applicability domain for the ten validation submodels were pooled and
Cooper’s statistics calculated. This gave the following results for the 49.8% (796/(5*320)) of the predictions
which were within the applicability domain:

— Sensitivity (true positives / (true positives + false negatives)): 35.6%

— Specificity (true negatives / (true negatives + false positives)): 88.6%

— Concordance ((true positives + true negatives) / (true positives + true negatives + false positives +
false negatives)): 69.3%

6.10 Robustness - Statistics obtained by Y-scrambling

Not performed.

6.11 Robustness - Statistics obtained by bootstrap

Not performed.

6.12 Robustness - Statistics obtained by other methods

Not performed.
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7. External validation

7.1 Availability of the external validation set

7.2 Available information for the external validation set

7.3 Data for each descriptor variable for the external validation set

7.4 Data for the dependent variable for the external validation set

7.5 Other information about the validation set

7.6 Experimental design of test set

7.7 Predictivity — Statistics obtained by external validation

7.8 Predictivity — Assessment of the external validation set

7.9 Comments on the external validation of the model

External validation not performed for this model.
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8. Mechanistic interpretation

8.1 Mechanistic basis of the model

The global model identifies structural features and molecular descriptors which in the model development
was found to be statistically significant associated with effect. Many predictions may indicate modes of
action that are obvious for persons with expert knowledge for the endpoint.

8.2 A priori or posteriori mechanistic interpretation

A posteriori mechanistic interpretation. The identified structural features and molecular descriptors may
provide basis for mechanistic interpretation.

8.3 Other information about the mechanistic interpretation
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9. Miscellaneous information

9.1 Comments

The model can be applied to predict if a chemical has the potential to cause liver tumours exclusively in
rodents (rat and/or mouse). A negative result does not mean that the predicted chemical is not a
carcinogen but that the chemical is not exclusively causing tumours in the rodent liver.

9.2 Bibliography
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9.3 Supporting information
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