
Leadscope Enterprise pathway model for mammalian Androgen Receptor (AR) activation in vitro (U.S. EPA 
CoMPARA data) 

 

1. QSAR identifier 

1.1 QSAR identifier (title) 

Leadscope Enterprise model for the U.S. EPA Collaborative Modeling Project for Androgen Receptor Activity 
(U.S. EPA CoMPARA data) binding in mammalian cells in vitro, model made by the Danish QSAR Group at DTU 
Food. 

 

1.2 Other related models 

No 

 

1.3. Software coding the model 

Leadscope Predictive Data Miner (LPDM), a component of Leadscope Enterprise Server version 3.5. 

 

 

2. General information 

2.1 Date of QMRF 

July 2020 

 

2.2 QMRF author(s) and contact details 

QSAR Group at DTU Food 
Danish National Food Institute at the Technical University of Denmark 
http://qsar.food.dtu.dk/ 
qsar@food.dtu.dk 

Ana Caroline Vasconcelos Martins 
National Food Institute at the Technical University of Denmark 

Eva Bay Wedebye 
National Food Institute at the Technical University of Denmark 

Nikolai Georgiev Nikolov 
National Food Institute at the Technical University of Denmark 

 

2.3 Date of QMRF update(s) 

None 

 

2.4 QMRF update(s) 

None 



2.5 Model developer(s) and contact details  

Eva Wedebye 
National Food Institute at the Technical University of Denmark 

Nikolai Nikolov 
National Food Institute at the Technical University of Denmark  

 

2.6 Date of model development and/or publication 

Development finalized in 2016 and published in 2020 

 

2.7 Reference(s) to main scientific papers and/or software package 

Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PEJ. (2000) LeadScope: Software for Exploring Large Sets 
of Screening Data. J. Chem. Inf. Comput. Sci., 40, 1302-1314. doi: 10.1021/ci0000631 

Cross KP, Myatt G, Yang C, Fligner MA, Verducci JS, Blower PE Jr. (2003) Finding Discriminating Structural 
Features by Reassembling Common Building Blocks. J. Med. Chem., 46, 4770-4775. doi: 10.1021/jm0302703 

Valerio LG, Yang C, Arvidson KB, Kruhlak NL. (2010) A structural feature-based computational approach for 
toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518. doi: 10.1517/17425250903499286 

 

2.8 Availability of information about the model 

The training set was kindly provided by the U.S. Environmental Protection Agency (EPA) and is non-
proprietary. The model algorithm is proprietary from commercial software. This model was made for the U.S. 
EPA CoMPARA project. 

 

2.9 Availability of another QMRF for exactly the same model 

No other QMRFs are available for this model 

 

 

3. Defining the endpoint 

3.1 Species 

Chimpanzee, mouse and human cell lines (11 biochemical and cell-based in vitro assays, of which 9 based on 
human cell lines, 1 based in chimpanzee cell line and 1 based on mouse cell line). 

 

3.2 Endpoint 

QMRF 4. Human Health Effects 

QMRF 4.18.b. Receptor binding and gene expression (Androgen Receptor) 

 

3.3 Comment on endpoint 

From Lynch et al 2016: 



“The androgen receptor (AR, NR3C4) is a transcription factor which regulates male sexual development, while 
also maintaining accessory sexual organ function. The structure of AR includes an N-terminal region which 
contains the activation function-1 (AF-1), a DNA-binding domain (DBD), a hinge region, and a ligand binding 
domain (LBD) which contains the ligand-regulated AF-2. AR is an evolutionarily conserved receptor and is 
closely related to the human glucocorticoid and progesterone receptors including even recognizing analogous 
DNA response elements. However, these receptors have a different hormone ligand specificity. AR is the main 
transcription factor implicated in transmitting hormone signals inside the prostate gland. As a key 
transcription factor regulating male sexual development, altering regulation of this nuclear receptor causes 
abnormal development of the prostate.” 

“AR activation can occur through direct or indirect pathways. Direct AR activation occurs through a multi-step 
process. First, the unliganded receptor sequestered by heat shock proteins and immunophilins in the 
cytoplasm of the cell binds to a ligand through the LBD. This causes a conformational change allowing for the 
dissociation from the complex anchoring AR in the cytoplasm. Once free, AR homodimerizes and the nuclear 
localization signal amino acid sequence becomes exposed. The nuclear localization signal subsequently binds 
to importins, which then transport AR into the nucleus. Once inside the nucleus, the ligand-receptor complex 
and its co-activators accumulate at sequence-specific nuclear foci. However, like its other nuclear receptor 
counterparts, AR can also be activated through multiple other pathways in an indirect manner; direct ligand 
binding is not necessary.” 

“Xenobiotic perturbation of AR has many possible adverse outcomes in humans. This includes multiple types 
of endocrine disruption such as changes in spermatogenesis and the synthesis of sex hormones. AR is a key 
driver of prostate cancer growth and AR expression and sensitivity have also been shown to increase in the 
androgen-responsive human prostatic carcinoma (LNCaP) cell line when grown in androgen-depleted 
medium. Other studies have shown that AR also has an important role in the modulation of multiple additional 
cancer types including liver, kidney, and bladder, and is linked to hepatocellular hypertrophy. Therefore, 
recognizing exogenous compounds and environmental chemicals which activate AR is critical in detecting 
endocrine disrupters and possible cancer modulators.”  

From Kleinstreuer et al. 2017: 

“A multiassay AR pathway model was developed based on the results of 11 ToxCast and Tox21 in vitro HTS 
assays covering the androgen signaling pathway including receptor-binding, coregulator recruitment, 
chromatin-binding of the mature transcription factor, and gene transcription and combining the in vitro 
results into an AUC score representing the whole AR activity to mimic the in vivo results. A certain number of 
chemicals could be expected to act as true AR agonists or antagonists, but there are also chemicals that are 
known to interfere with these various assay technologies through false signals such as autofluorescence or 
cytostatic mechanisms.”  

“Here, the data from 11 AR pathway assays were supplemented with an additional antagonist confirmation 
assay using a higher concentration of the activating ligand to characterize competitive binding. This battery 
of in vitro AR assays was used to screen a library of 1855 chemicals. Observed patterns of assay activity 
included no assays activated, all agonist assays activated, all antagonist assays activated, specific subsets of 
assays across technologies activated, and technology-specific assay activation. To navigate this complexity in 
the results, we developed a computational network model to infer whether chemicals that activate specific 
patterns of in vitro assays were more likely to be AR agonists, AR antagonists, false positives due to specific 
types of assay interference, or true negatives.” 

“Evaluating and validating the AR pathway model requires high-quality reference data for AR agonist and 
antagonist activity. Unlike the ER pathway, which has a well-characterized set of in vitro and in vivo reference 
chemicals, the reference chemical set for the AR pathway is much less developed. Previous work focused on 
identifying chemicals that were positive or negative for (anti)androgenicity, without a specific emphasis on 
potency, and often included compounds that were “presumed” active or inactive. Using a comprehensive list 



of putative AR-active or -inactive chemicals from past and present international validation studies, we 
performed a literature search to compile high-quality published in vitro AR binding and transactivation (TA) 
assay data. To facilitate external validation of the AR pathway model results, no ToxCast or Tox21 assay data 
were included in the literature search. We identified a set of chemicals with reliable and reproducible in vitro 
results from the literature and binned the chemicals into defined potency categories. The list of proposed 
reference chemicals and the supporting data are provided and were used to evaluate the current 
computational model of AR pathway activity based on the Tox21 and ToxCast assays.” 

 

3.4 Endpoint units 

No units, 1 for positives and 0 for negatives 

 

3.5 Dependent variable 

Positives: At least three TA experiments of which at least 70% yielded positive TA results and at least one 
positive binding result.  

Negatives: At least three TA experiments yielding negative results and no TA experiments yielding positive 
results  

 

3.6 Experimental protocol 

See Kleinstreuer et al. 2017 

 

3.7 Endpoint data quality and variability 

The data is expected to be of high quality because of the integration of several assays to exclude false 
positives caused by narrow (technology-specific) or broad assay interference. Also, the variability in the data 
is expected to be low as for each assay all chemicals have been tested in the same laboratory and the process 
of assigning an AR binding score using the network model (see 3.2) has been equal for all chemicals. 

According to Kleinstreuer et al. 2017, 29 reference chemicals for AR agonism were identified with high-quality 
in vitro AR results in the literature and were among the 1855 chemicals tested in ToxCast / Tox21. They could 
therefore be used for performance-based external validation of the AR pathway model results. 

Activation (agonism) performance based on 8 positive and 21 negative reference substances, based on text 
and Table 2 in Kleinstreuer et al. 2017: If inconclusive scores were considered positive, the AR pathway model 
had a balanced accuracy of 95.2% (100% sensitivity (8/8) and 90.5% specificity (19/21)) against the agonist 
reference substances, and if CoMPARA inconclusive results were excluded, the balanced accuracy was 97.5% 
(100% sensitivity (8/8) and 95% specificity (19/20)).  

 

 

4. Defining the algorithm  

4.1 Type of model 

A categorical QSAR model based on structural features and numeric molecular descriptors. 

 



4.2 Explicit algorithm 

This is a categorical QSAR model made by use of partial logistic regression (PLR). The model is a ‘Multiple 
model’, see 4.4, that integrates a LPDM composite model consisting of 10 sub-models, using all the positives 
(43 chemicals) in each of these and different subsets of the negatives (1616 chemicals) (see 4.4). The specific 
implementation is proprietary within the LPDM software.  

 

4.3 Descriptors in the model 

ALogP, 

Hydrogen Bonds Acceptors and Donors, 

Lipinski Score, 

Molecular Weight, 

Parent Atom Count, 

Parent Molecular Weight, 

Polar Surface Area, 

Number of rotational bonds, 

Structural features. 

 

4.4 Descriptor selection  

LPDM is a software program for systematic sub-structural analysis of a substance using predefined structural 

features stored in a template library, training set-dependent generated structural features (scaffolds) and 

calculated molecular descriptors. The feature library contains approximately 27,000 pre-defined structural 

features and the structural features chosen for the library are motivated by those typically found in small 

molecules: aromatics, heterocycles, spacer groups, simple substituents. LPDM allows for the generation of 

training set-dependent structural features (scaffold generation), and these features can be added to the pre-

defined structural features from the library and be included in the descriptor selection process. It is possible 

in LPDM to remove redundant structural features before the descriptor selection process and only use the 

remaining features in the descriptor selection process. Besides the structural features LPDM also calculates 

eight molecular descriptors for each training set structure: the octanol/water partition coefficient (alogP), 

hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), Lipinski score, atom count, parent substance 

molecular weight, polar surface area (PSA) and rotatable bonds. These eight molecular descriptors are also 

included in the descriptor selection process. 

LPDM has a default automatic descriptor pre-selection procedure. This procedure selects the top 30% of the 

descriptors (structural features and molecular descriptors) according to X2-test for a binary variable or the 

top and bottom 15% descriptors according to t-test for a continuous variable. LPDM treats numeric property 

data as ordinal categorical data. If the input data is continuous such as IC50 or cLogP data, the user can 

determine how values are assigned to categories: the number of categories and the cut-off values between 

categories. (Roberts et al.2000). 

After pre-selection of descriptors the LPDM program performs partial least squares (PLS) regression for a 

continuous response variable, or PLR for a binary response variable, to build a predictive model. By default 



the Predictive Data Miner performs leave-one-out or leave-groups-out (in the latter case, the user can specify 

any number of repetitions and percentage of structures left out) cross-validation on the training set 

depending on the size of the training set. In the cross-validation made by using the built-in LPDM 

functionality, the descriptors selected for the ‘mother model’ are used when building the validation sub-

models and they may therefore have a tendency to give overoptimistic validation results.  

In this model the categorical outcome in the response variable PLR was used to develop the predictive model. 

Development of a PLR predictive model starts with the pre-selected descriptors with further selection of 

descriptors in an iterative procedure, and selection of the optimum number of factors based on minimizing 

the predictive residual sum of squares. 

Composite models were developed with creation of a number of sub-models and by using three QSAR 
modelling approaches in which all underwent a 10 times 20 % - out LPDM cross-validation: 

1. A single model, i.e. a non-composite model using the full training set.  
2. A composite model, with a number of sub-models of equal weight based on balanced training 

subsets.  
3. A composite ‘cocktail’ model, combining the single model from 1) with the sub-models of the 

composite model from 2). 

The descriptors for each of the sub-models are automatically selected from the LPDM feature library based 

solely on the training set substances used to build the individual sub-models and was not affected by the full 

training set substances. Therefore, a different number of descriptors (structural features and molecular 

descriptors) are selected and distributed on varying number of PLS factors for each sub-model. 

Because of the unbalanced training set (i.e. 43 positives and 1616 negatives) 10 sub-models for smaller 

individual training sets were made in the composite approach (point 2), and a single model was also 

developed (point 1) and integrated with the composite model in a ‘cocktail’ model (point 3).  

Based on model performance as measured by a LPDM cross-validation the model developed using approach 

2 was chosen. 

 

4.5 Algorithm and descriptor generation 

Algorithm and descriptor generation takes place in LPDM in a process integrated with descriptor selection 

and therefore the whole subject is described in section 4.4. 

 

4.6 Software name and version for descriptor generation 

LPDM, a component of Leadscope Enterprise version 3.5. 

 

4.7 Descriptors/chemicals ratio 

As this model is a composite model consisting of 10 sub-models with varying training set size and using 
different descriptors and number of PLS factors (see 4.4), an overall descriptor/chemical ratio for this model 
cannot be calculated. The data for individual models as follows: 

 

 



Name of the model Substances Descriptors PLS factors 

COMPARA2_Multiple_Scaffolds_Model-1 205 119 1 

COMPARA2_Multiple_Scaffolds_Model-2 205 154 3 

COMPARA2_Multiple_Scaffolds_Model-3 205 118 1 

COMPARA2_Multiple_Scaffolds_Model-4 205 173 3 

COMPARA2_Multiple_Scaffolds_Model-5 205 175 3 

COMPARA2_Multiple_Scaffolds_Model-6 205 118 3 

COMPARA2_Multiple_Scaffolds_Model-7 204 172 2 

COMPARA2_Multiple_Scaffolds_Model-8 204 167 1 

COMPARA2_Multiple_Scaffolds_Model-9 204 119 1 

COMPARA2_Multiple_Scaffolds_Model-10 204 153 2 

 

 

5. Defining Applicability Domain  

5.1 Description of the applicability domain of the model 

The definition of the applicability domain consists of two components; the definition of a structural domain 
in Leadscope and an in-house further probability refinement algorithm on the output from LPDM to reach 
the final applicability domain call. 

1. LPDM 

For assessing if a test compound is within the structural applicability domain of a given model LPDM examines 
whether the test compound bears enough structural resemblance to the training set compounds used for 
building the model (i.e. a structural domain analysis). This is done by calculating the distance between the 
test compound and all compounds in the training set (distance = 1 - similarity). The similarity score is based 
on the Jaccard / Tanimoto method and using the LPDM predefined library of 27,000 features. The number of 
neighbours is defined as the number of compounds in the training set that have a distance equal to or smaller 
than 0.7 with respect to the test compound. The higher the number of neighbours, the more reliable the 
prediction for the test compound. Statistics of the distances are also calculated. Furthermore, LPDM requires 
that the test compound contains at least one model feature or scaffold from the model. Effectively no 
predictions are made for test compounds which are not within the structural domain of the model or for 
which the molecular descriptors could not be calculated in LPDM. 

2. The Danish QSAR group 

In addition to the general LPDM structural applicability domain definition the Danish QSAR group has applied 
a further requirement to the applicability domain of the model. That is only positive predictions with a 
probability equal to or greater than 0.6 and negative predictions with probability equal to or less than 0.3 are 
accepted. Predictions within the structural applicability domain but with probability between 0.3 to 0.6 or 
0.5 to 0.6 are defined as positives out of applicability domain and negatives out of applicability domain, 
respectively. When these predictions are weeded out the performance of the model in general increases at 
the expense of reduced model coverage. 

 

5.2 Method used to assess the applicability domain 

DTU-developed in-house post-treatment procedure to assign domain flags according to the description in 
5.1. 



Leadscope does not generate predictions for test compounds which are not within the structural domain of 
the model or for which the molecular descriptors could not be calculated.  

 

5.3 Software name and version for applicability domain assessment 

LPDM, a component of Leadscope Enterprise version 3.5. 

 

5.4 Limits of applicability 

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing which is 
applicable for all the in-house QSAR software, i.e. not only LPDM. According to this definition accepted 
structures are organic substances with an unambiguous structure, i.e. so-called discrete organics defined as: 
organic compounds with a defined two dimensional (2D) structure containing at least two carbon atoms, only 
certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I), and not mixtures with two or more ‘big 
components’ when analysed for ionic bonds (for a number of small known organic ions assumed not to affect 
toxicity the ‘parent molecule’ is accepted). Calculation 2D structures (SMILES and/or SDF) are generated by 
stripping off ions (of the accepted list given above). Thus, all the training set and prediction set chemicals are 
used in their non-ionized form. See 5.1 for further applicability domain definition.  

 

 

6. Internal validation 

6.1 Availability of the training set 

Yes, from Mansouri et al. 2020 here: https://ehp.niehs.nih.gov/doi/full/10.1289/EHP5580 

 

6.2 Available information for the training set 

The file contains identifier, structure information in SDF format and activity call for each substance. 

 

6.3 Data for each descriptor variable for the training set 

No 

 

6.4 Data for the dependent variable for the training set 

Yes 

 

6.5 Other information about the training set 

1659 compounds are in the training set: 43 positives and 1616 negatives. 

 

6.6 Pre-processing of data before modelling 

Only structures acceptable for Leadscope were used in the final training set. That is only discrete organic 
chemicals as described in 5.4 were used. In case of replicate structures, one of the replicates was kept if all 



the compounds had the same activity and all were removed if they had different activity. No further 
structures accepted by the software were eliminated (i.e. outliers). 

 

6.7 Statistics for goodness-of-fit 

Not performed 

 

6.8 Robustness – Statistics obtained by leave-one-out cross-validation  

Not performed. (It is not a preferred measurement for evaluating large models). 

 

6.9 Robustness – Statistics obtained by leave-many-out cross-validation 

A two times five-fold (i.e. 20 % out) cross-validation by DTU Food cross-validation procedure was performed. 

Cooper’s statistics were calculated for each of the left-out sets for predictions within the defined applicability 
domain from the ten validation sub-models and used to calculate average values and standard deviations. 
This gave the following results for the predictions which were within the applicability domains of the 
respective sub-models: 

− Sensitivity (true positives / (true positives + false negatives)): 76.3±16.1% 
− Specificity (true negatives / (true negatives + false positives)): 99.3±0.5% 
− Balanced Accuracy ((Sensitivity + Specificity) /2): 87.8±8.0% 
− Coverage ((In-Domain predictions) / (All predictions)): 84.5±1.9% 

 

6.10 Robustness - Statistics obtained by Y-scrambling 

Not performed 

 

6.11 Robustness - Statistics obtained by bootstrap 

Not performed 

 

6.12 Robustness - Statistics obtained by other methods 

Not performed 

 

 

7. External validation 

7.1 Availability of the external validation set 

An external validation set with results using the CoMPARA 11 tests integrated by a network model is not 
available. Rather, an evaluation set with results from other types of assays and gathered from the literature 
is available from Mansouri et al. 2020 here: https://ehp.niehs.nih.gov/doi/full/10.1289/EHP5580. Results for 
the DTU Leadscope model contributed to the CoMPARA project are given here, please note that the 
Leadscope model reported in this QMRF developed in a newer version of Leadscope (the Leadscope version 



used for CoMPARA is v.3.4 and in the model reported here is developed in Leadscope v.3.5, however using 
the exact same settings). 

 

7.2 Available information for the external validation set 

The file contains identifier, structure information in MOL format and activity call for each substance. 

 

7.3 Data for each descriptor variable for the external validation set 

No 

 

7.4 Data for the dependent variable for the external validation set 

Yes 

 

7.5 Other information about the validation set  

4839 compounds are in the evaluation set: 167 positives and 4672 negatives. 

 

7.6 Experimental design of test set 

From Mansouri et al. 2020: 

“The evaluation set comprised data extracted from the literature to be used for evaluating the predictive 
ability of the models (mostly for verification purposes and not to compare models), performed in parallel with 
the model building efforts.” 

 

7.7 Predictivity – Statistics obtained by external validation 

According to Mansouri et al. supplementary material S7 (underlying numbers not given), the following 
statistics were found for the DTU Leadscope v.3.4 model: 

- Sensitivity: 77.3% 
- Specificity: 97.8% 
- Balance Accuracy: 87.5% 

 

7.8 Predictivity – Assessment of the external validation set 

From Mansouri et al. 2020: 

“The EPA’s NCCT collected and curated PubChem data (64 sources), restructured it, and mapped the 
bioactivity values to related biological targets. In this effort, we started with∼80,000 experimental values for 
AR activity, which mapped to about∼11,000 chemicals that we grouped by modality (agonist, antagonist) 
and hit call (active, inactive). To improve the consistency between the different PubChem entries and to add 
binding modality, three rules were applied: 

 In the case of multiple records for a test chemical, a minimum concordance of two out of three assay 
results was required to assign a positive activity score. 

 An active agonist or antagonist was considered a binder. 



 Inactive agonists and antagonists were considered nonbinders. 

The KNIME standardization workflow referenced earlier was applied to the chemical structures (Mansouri et 
al. 2016a; McEachran et al. 2018). After removing ToxCast™ chemicals (used for the training set), the 
generated standard InChI codes matched 7,281 chemicals from the CoMPARA list (prediction set). This list of 
7,281 chemicals, with associated data extracted from the literature, was used as the evaluation set. The 
removed ToxCast™ chemicals were mostly associated with ToxCast™ data only. The evaluation set chemicals 
were split into three data sets based on the available experimental data. The resulting lists included 4,839 
structures for agonist, 4,040 for antagonist, and 3,882 for binding” 

 

7.9 Comments on the external validation of the model 

A true external validation was not performed, but rather an evaluation using other types of data was used so 
the results from the robust leave-many-out cross-validation may be more representative of the predictivity 
of the model.  

 

8. Mechanistic interpretation  

8.1 Mechanistic basis of the model 

The global model identifies structural features and molecular descriptors which in the model development 
was found to be statistically significant associated with effect. Many predictions may indicate modes of action 
that are obvious for persons with expert knowledge for the endpoint. 

 

8.2 A priori or posteriori mechanistic interpretation 

A posteriori mechanistic interpretation. The identified structural features and molecular descriptors may 
provide basis for mechanistic interpretation. 

AR activation is a mechanistic endpoint related to a number of health outcomes. 

 

8.3 Other information about the mechanistic interpretation 

None 

 

 

9. Miscellaneous information 

9.1 Comments 

The model can be used to predict if a substance is an AR activator (i.e. has an AR activator score equal to or 
above 0.1) according to the network model based on the 11 AR pathway in vitro assays. 
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