
Leadscope Enterprise model for activation of mammalian Estrogen Receptor (ER) in vitro (U.S. EPA CERAPP 
data) 

 

1. QSAR identifier  

1.1 QSAR identifier (title) 

Leadscope Enterprise model for activation of mammalian Estrogen Receptor (ER) activation in vitro (U.S. 
EPA CERAPP data), Danish QSAR Group at DTU Food. 

 

1.2 Other related models 

No 

 

1.3. Software coding the model 

Leadscope Predictive Data Miner (LPDM), a component of Leadscope Enterprise Server version 3.5. 

 

 

2. General information 

2.1 Date of QMRF 

July 2020 

 

2.2 QMRF author(s) and contact details  

QSAR Group at DTU Food 
Danish National Food Institute at the Technical University of Denmark 
http://qsar.food.dtu.dk/ 
qsar@food.dtu.dk 

Ana Caroline Vasconcelos Martins 
National Food Institute at the Technical University of Denmark 

Eva Bay Wedebye 
National Food Institute at the Technical University of Denmark 

Nikolai Georgiev Nikolov 
National Food Institute at the Technical University of Denmark 

Sine Abildgaard Rosenberg 
National Food Institute at the Technical University of Denmark when the version for CERAPP was developed 
in LPDM v.3.1.1-10 

 

2.3 Date of QMRF update(s) 

None 

 



2.4 QMRF update(s) 

None 

 

2.5 Model developer(s) and contact details  

Sine Abildgaard Rosenberg 
National Food Institute at the Technical University of Denmark when the version for CERAPP was developed 
in LPDM v.3.1.1-10 

Eva Bay Wedebye 
National Food Institute at the Technical University of Denmark 

Nikolai Georgiev Nikolov 
National Food Institute at the Technical University of Denmark 

 

2.6 Date of model development and/or publication 

Development of CERAPP version in LPDM v.3.1.1-10 finalized in June 2014 and the version developed in 
LPDM v.3.5 reported here is published in 2020 

 

2.7 Reference(s) to software package 

Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PEJ. (2000) LeadScope: Software for Exploring Large Sets 
of Screening Data. J. Chem. Inf. Comput. Sci., 40, 1302-1314. doi: 10.1021/ci0000631 

Cross KP, Myatt G, Yang C, Fligner MA, Verducci JS, Blower PE Jr. (2003) Finding Discriminating Structural 
Features by Reassembling Common Building Blocks. J. Med. Chem., 46, 4770-4775. doi: 10.1021/jm0302703 

Valerio LG, Yang C, Arvidson KB, Kruhlak NL. (2010) A structural feature-based computational approach for 
toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518. doi: 10.1517/17425250903499286 

 

2.8 Availability of information about the model 

The training set was kindly provided by the U.S. Environmental Protection Agency (EPA) and is non-
proprietary. The model algorithm is proprietary from commercial software. This model was originally made 
for the U.S. EPA CERAPP project. 

 

2.9 Availability of another QMRF for exactly the same model 

No other QMRFs are available for this model 

 

 

3. Defining the endpoint  

3.1 Species 

Bovine, mouse and human cell lines (18 biochemical and cell-based in vitro assays, of which 16 based on 
human cell lines, 1 based on bovine cell line and 1 based on mouse cell line). 

 



3.2 Endpoint 

QMRF 4. Human Health Effects 

QMRF 4.18.b. Receptor binding and gene expression (Estrogen Receptor) 

 

3.3 Comment on endpoint  

There is increasing evidence that a variety of environmental substances have the potential to disrupt the 
endocrine system by mimicking or inhibiting endogenous hormones such as estrogens and androgens. These 
“endocrine disrupting chemicals” (EDCs) may adversely affect development and/or reproductive function. 

Endogenous estrogens are involved in the development and adult function of organs of the female genital 
tract, neuroendocrine tissues and the mammary glands; their role in reproduction spans from maintenance 
of the menstrual cycle to pregnancy and lactation. These effects are primarily mediated through the estrogen 
receptors (ERs), members of the nuclear receptor superfamily. When estrogen binds to the ER in the 
cytoplasm a receptor-hormone complex dimer is formed. This dimer translocates to the nucleus, where it 
recruits co-factors to form the active transcription factor (TF) complex. The active TF binds to the estrogen 
response element upstream to the target gene. This binding activates transcription of mRNA and subsequent 
translation to proteins that exert the hormone effects. Two isoforms of the ER exists in humans, alpha and 
beta, and both are widely expressed in different tissue types although there are some differences in their 
expression pattern.  

Exogenous substances able to bind to and activate the ERs (i.e. ER agonists) have the ability to mimic natural 
estrogens and cause adverse effects to the reproductive system. Likewise, exogenous substances that bind 
to the ERs without subsequent activation (i.e. ER inhibitors) can potentially disturb the effect of the 
endogenous estrogens by blocking the receptors. 

Results from 18 in vitro high-throughput screening assays that probe the ER signaling pathway in a 
mammalian system were integrated in a computational network model (Judson et al. 2014). The assays were 
a combination of biochemical and cell-based in vitro assays and probe perturbations of the ER pathway at 
multiple sites: receptor binding, receptor dimerization, DNA binding of the active transcription factor, gene 
transcription and changes in ER-induced cell growth kinetics. The network model uses activity patterns across 
the 18 in vitro assays to predict whether the substance is an ER activator, an ER inhibitor, or instead is causing 
activity through narrow (technology-specific) or broad assay interference. For example, if a substance is 
active in all of the assays in the ER activation pathway of the network model a score for activation is calculated 
as the AUC for the accumulated Hill model (based on the AC50 from the assays). If none or only parts of the 
assays in the ER activation pathway are active, the substance is a clear negative or is causing some form of 
assay interference (narrow or broad depending on which assays in the pathway that are active), respectively. 
These substances have an ER activation score of 0 and are all assumed to be negative (Judson et al. 2014). 

In order to make a classification model, substances with an ER activation score of 0 were defined as inactives 
and substances with an AUC score of 0.1 or above were defined as an ER activator. 

  

3.4 Endpoint units 

No units, 1 for positives and 0 for negatives 

 

3.5 Dependent variable 

Mammalian Estrogen Receptor activation: positive or negative 



 

3.6 Experimental protocol 

See S1, Appendix 1 in Judson et al. 2015 

 

3.7 Endpoint data quality and variability 

The data is expected to be of high quality because of the integration of several assays to exclude false 
positives caused by narrow (technology-specific) or broad assay interference. Also, the variability in the data 
is expected to be low as for each assay all substances have been tested in the same laboratory and the process 
of assigning an ER activation score using the network model (see 3.2) has been equal for all substances. 
However, we do not have measures of reproducibility of the results. 

 

 

4. Defining the algorithm  

4.1 Type of model 

A categorical QSAR model based on structural features and numeric molecular descriptors. 

 

4.2 Explicit algorithm 

This is a categorical QSAR model made by use of partial logistic regression (PLR). The model is a ‘Cocktail 
model’, see 4.4, that integrates a so-called single model and a LPDM composite model consisting of 10 sub-
models, using all the positives (80 substances) in each of these and different subsets of the negatives (1340 
substances) (see 4.4), i.e. the cocktail composite model contains 11 sub-models. The specific implementation 
is proprietary within the LPDM software. 

 

4.3 Descriptors in the model 

ALogP, 

Hydrogen Bonds Acceptors and Donors, 

Lipinski Score, 

Molecular Weight, 

Parent Atom Count, 

Parent Molecular Weight, 

Polar Surface Area, 

Number of rotational bonds, 

Structural features. 

 

4.4 Descriptor selection  

LPDM is a software program for systematic sub-structural analysis of a substance using predefined structural 
features stored in a template library, training set-dependent generated structural features (scaffolds) and 



calculated molecular descriptors. The feature library contains approximately 27,000 pre-defined structural 
features and the structural features chosen for the library are motivated by those typically found in small 
molecules: aromatics, heterocycles, spacer groups, simple substituents. LPDM allows for the generation of 
training set-dependent structural features (scaffold generation), and these features can be added to the pre-
defined structural features from the library and be included in the descriptor selection process. It is possible 
in LPDM to remove redundant structural features before the descriptor selection process and only use the 
remaining features in the descriptor selection process. Besides the structural features LPDM also calculates 
eight molecular descriptors for each training set structure: the octanol/water partition coefficient (alogP), 
hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), Lipinski score, atom count, parent substance 
molecular weight, polar surface area (PSA) and rotatable bonds. These eight molecular descriptors are also 
included in the descriptor selection process. 

LPDM has a default automatic descriptor pre-selection procedure. This procedure selects the top 30% of the 
descriptors (structural features and molecular descriptors) according to X2-test for a binary variable or the 
top and bottom 15% descriptors according to t-test for a continuous variable. LPDM treats numeric property 
data as ordinal categorical data. If the input data is continuous such as IC50 or cLogP data, the user can 
determine how values are assigned to categories: the number of categories and the cut-off values between 
categories. (Roberts et al.2000). 

After pre-selection of descriptors the LPDM program performs partial least squares (PLS) regression for a 
continuous response variable, or PLR for a binary response variable, to build a predictive model. By default 
the Predictive Data Miner performs leave-one-out or leave-groups-out (in the latter case, the user can specify 
any number of repetitions and percentage of structures left out) cross-validation on the training set 
depending on the size of the training set. In the cross-validation made by using the built-in LPDM 
functionality, the descriptors selected for the ‘mother model’ are used when building the validation sub-
models and they may therefore have a tendency to give overoptimistic validation results.  

In this model the categorical outcome in the response variable PLR was used to develop the predictive model. 
Development of a PLR predictive model starts with the pre-selected descriptors with further selection of 
descriptors in an iterative procedure, and selection of the optimum number of factors based on minimizing 
the predictive residual sum of squares. 

Composite models were developed with creation of a number of sub-models and by using three QSAR 
modelling approaches in which all underwent a 10 times 20 % - out LPDM cross-validation: 

1. A single model, i.e. a non-composite model using the full training set.  
2. A composite model, with a number of sub-models of equal weight based on balanced training 

subsets.  
3. A composite ‘cocktail’ model, combining the single model from 1) with the sub-models of the 

composite model from 2). 

The descriptors for each of the sub-models are automatically selected from the LPDM feature library based 
solely on the training set substances used to build the individual sub-models and was not affected by the full 
training set substances. Therefore, a different number of descriptors (structural features and molecular 
descriptors) are selected and distributed on varying number of PLS factors for each sub-model. 

Because of the unbalanced training set (i.e. 80 positives and 1340 negatives) 10 sub-models for smaller 
individual training sets were made in the composite approach (point 2), and a single model was also 
developed (point 1) and integrated with the composite model in a ‘cocktail’ model (point 3).  

Based on model performance as measured by a LPDM cross-validation the model developed using approach 
3 integrating number 1 and 2 into a cocktail composite model was chosen. 

 



4.5 Algorithm and descriptor generation 

Algorithm and descriptor generation takes place in LPDM in a process integrated with descriptor selection 
and therefore the whole subject is described in section 4.4. 

 

4.6 Software name and version for descriptor generation 

LPDM, a component of Leadscope Enterprise version 3.5. 

 

4.7 Descriptors/chemicals ratio 

The model system uses molecular descriptors and structural features specific to a group of structurally 
related substances from the global training set. Therefore estimations of the number of used descriptors may 
be difficult. In general, we estimate that the models effectively use an order of magnitude less descriptors 
than numbers of substances in the training set when we set our domain definition where we weed out low 
probability active and inactive predictions (see 5.1).  

Name of the model Substances Descriptors PLS factors 

CERAPP_35_0.1_0_Multiple_ Model-1 214 157 3 

CERAPP_35_0.1_0_Multiple_ Model-2 214 159 1 

CERAPP_35_0.1_0_Multiple_ Model-3 214 115 1 

CERAPP_35_0.1_0_Multiple_ Model-4 214 162 2 

CERAPP_35_0.1_0_Multiple_ Model-5 215 150 1 

CERAPP_35_0.1_0_Multiple_ Model-6 215 133 2 

CERAPP_35_0.1_0_Multiple_ Model-7 214 115 2 

CERAPP_35_0.1_0_Multiple_ Model-8 214 157 3 

CERAPP_35_0.1_0_Multiple_ Model-9 213 116 3 

CERAPP_35_0.1_0_Multiple_ Model-10 213 132 3 

CERAPP_35_0.1_0_1_Model 1.0  1420 142 1 

 

 

5. Defining Applicability Domain  

5.1 Description of the applicability domain of the model 

The definition of the applicability domain consists of two components; the definition of a structural domain 
in LPDM and an in-house further probability refinement algorithm on the output from LPDM to reach the 
final applicability domain call. 

1. LPDM 

For assessing if a test substance is within the structural applicability domain of a given model, LPDM examines 
whether the test substance bears enough structural resemblance to the training set substances used for 
building the model (i.e. a structural domain analysis). This is done by calculating the distance between the 
test substance and all substances in the training set (distance = 1 - similarity). The similarity score is based on 
the Jaccard / Tanimoto method and using the LPDM predefined library of 27,000 features. The number of 
neighbours is defined as the number of substances in the training set that have a distance equal to or smaller 
than 0.7 with respect to the test substance. The higher the number of neighbours, the more reliable the 
prediction for the test substance. Statistics of the distances are also calculated. Furthermore, LPDM requires 



that the test substance contains at least one model feature or scaffold from the model. Effectively no 
predictions are made for test substances which are not within the structural domain of the model or for 
which the molecular descriptors could not be calculated in LPDM. 

2. The Danish QSAR group 

In addition to the general LPDM structural applicability domain definition the Danish QSAR group has applied 
a further requirement to the applicability domain of the model. That is only positive predictions with a 
probability equal to or greater than 0.7 and negative predictions with probability equal to or less than 0.3 are 
accepted. Predictions within the structural applicability domain but with probability between 0.5 to 0.7 or 
0.3 to 0.5 are defined as positives out of applicability domain and negatives out of applicability domain, 
respectively. When these predictions are weeded out the performance of the model in general increases at 
the expense of reduced model coverage.  

 

5.2 Method used to assess the applicability domain 

LPDM does not generate predictions for test substances which are not within the structural domain of the 
model or for which the molecular descriptors could not be calculated.  

Only positive predictions with probability equal to or greater than 0.7 and negative predictions with 
probability equal to or less than 0.3 are accepted. 

 

5.3 Software name and version for applicability domain assessment 

LPDM, a component of Leadscope Enterprise version 3.5. 

 

5.4 Limits of applicability 

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing which is 
applicable for all the in-house QSAR software, i.e. not only LPDM. According to this definition accepted 
structures are organic substances with an unambiguous structure, i.e. so-called discrete organics defined as: 
organic substances with a defined two dimensional (2D) structure containing at least two carbon atoms, only 
certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I), and not mixtures with two or more ‘big 
components’ when analyzed for ionic bonds (for a number of small known organic ions assumed not to affect 
toxicity the ‘parent molecule’ is accepted). Calculation 2D structures (SMILES and/or SDF) are generated by 
stripping off ions (of the accepted list given above). Thus, all the training set and prediction set substances 
are used in their non-ionized form. See 5.1 for further applicability domain definition.  

 

 

6. Internal validation 

6.1 Availability of the training set 

Yes 

 

6.2 Available information for the training set 

SMILES 

 



6.3 Data for each descriptor variable for the training set 

No 

 

6.4 Data for the dependent variable for the training set 

All 

 

6.5 Other information about the training set 

1420 substances are in the training set: 80 positives and 1340 negatives.  

 

6.6 Pre-processing of data before modeling 

Only structures acceptable for Leadscope were used in the final training set. That is only discrete organic 
chemicals as described in 5.4 were used. In case of replicate structures, one of the replicates was kept if all 
the compounds had the same activity and all were removed if they had different activity. No further 
structures accepted by the software were eliminated (i.e. outliers). 

 

6.7 Statistics for goodness-of-fit 

Not performed 

 

6.8 Robustness – Statistics obtained by leave-one-out cross-validation  

Not performed. (It is not a preferred measurement for evaluating large models).  

 

6.9 Robustness – Statistics obtained by leave-many-out cross-validation 

The original CERAPP model developed in LPDM v.3.1.1-10 underwent a five times two-fold cross-validation. 
This was done by randomly removing 50% of the full training set used to make the “mother model”, where 
the 50% contains the same ratio of positive and negatives as the full training set. A new model (validation 
sub-model) was created on the remaining 50% using the same settings in LPDM but with no information from 
the “mother model” regarding descriptor selection etc. The validation sub-model was applied to predict the 
removed 50% (within the defined applicability domain). Likewise, a validation sub-model was made on the 
removed 50% of the training set and this model was used to predict the other 50% (within the defined 
applicability domain). This was repeated five times.  

Predictions from the ten sub-models were pooled and Coopers statistics were calculated. This gave the 
following results for the predictions which were within the applicability domains of the respective sub-
models:  

 Sensitivity (100% * true positives / (true positives + false negatives)): 100%*270/(270+65) = 80.60% 

 Specificity (100% * true negatives / (true negatives + false positives)): 100%*4650/(4650+278) = 
94.36% 

 Balanced accuracy ((sensitivity + specificity) / 2): (80.6% + 94.36%)/2 = 87.5% 

 Coverage (100% * in-domain predictions / all predictions): 100% * 5263 / (5 * 1420) = 74.1% 

The final version of the CERAPP activation model, reported in this QMRF, developed in LPDM v.3.5 underwent 
a two times five-fold (i.e. 20 % out in total 10 times) cross-validation by DTU Food cross-validation procedure. 



Cooper’s statistics were calculated for each of the left-out sets for predictions within the defined applicability 
domain from the ten validation sub-models and used to calculate average values and standard deviations. 
This gave the following results for the predictions, which were within the applicability domains of the 
respective sub-models: 

- Sensitivity (100% * true positives / (true positives + false negatives)): 78.5± 10.3% 
- Specificity (100% * true negatives / (true negatives + false positives)): 96.7±1.1% 
- Balanced accuracy ((sensitivity + specificity) / 2): 87.6± 5.3% 
- Coverage (100% * in-domain predictions / all predictions): 77.3±2.5% 

 

6.10 Robustness - Statistics obtained by Y-scrambling 

Not performed 

 

6.11 Robustness - Statistics obtained by bootstrap 

Not performed 

 

6.12 Robustness - Statistics obtained by other methods 

Not performed 

 

 

7. External validation 

7.1 Availability of the external training set 

Results for the DTU LPDM model contributed to the CERAPP project reported in Mansouri et al. 2016 are 
given in this section (LPDM v. 3.1.1-10 is used for CERAPP is).  

Please note that the LPDM model reported in this QMRF is developed in a newer version of LPDM  (the LPDM 
v.3.5 and an optimized DTU modeling approach is used for the DTU model reported in this QMRF). 

An “external validation” set with results using the CERAPP 18 tests integrated by a network model is not 
available. Rather, an evaluation set with results from other types of assays and gathered from the literature 
was done in Mansouri et al. 2016. The evaluation set is available from the U.S. EPA CERAPP site (URL not 
given here as it has changed since the publication of Mansouri et al. 2016 publication and may change also 
in the future, so it is better to search the site given at any point in time);  

 Sensitivity Specificity 

ToxCast 0.875 0.904 

All literature 0.673 0.898 

multSrc Literature 0.738 0.898 

no_VW literature 0.689 0.898 

in_AD Literature 0.678 0.932 

allPar Literature 0.764 0.932 

 

7.2 Available information for the external training set 

The file contains identifier, structure information in MOL format and activity call for each substance. 



7.3 Data for each descriptor variable for the external training set 

No 

 

7.4 Data for the dependent variable for the external training set 

Yes 

 

7.5 Other information about the training set 

The evaluation set comprised 6,319 substances, of which 350 were positive and 5,969 were negative. Of 
these, 84.14% were in AD according to Mansouri et al. 2016 Table S3, however the numbers for TP, TN, FP 
and FN are not given. 

 

7.6 Experimental design of test set 

From Mansouri et al. 2016:  

“Experimental evaluation set. A large volume of estrogen-related experimental data has accumulated in the 
literature over the past two decades. The information on the estrogenic activity of chemicals was mined and 
curated to serve as a validation set for predictions of the different models. For this purpose, in vitro 
experimental data were collected from different overlapping sources, including the U.S. EPA’s HTS assays, 
online databases, and other data sets used by participants to train models: 

 HTS data from Tox21 project consisting of ~ 8,000 chemicals evaluated in four assays (Attene-Ramos et 
al. 2013; Collins et al. 2008; Huang et al. 2014; Shukla et al. 2010; Tice et al. 2013), extending beyond the 
1,677 used in the training set. 

 The U.S. FDA Estrogenic Activity Database (EADB), which consists of literature derived ER data for ~ 8,000 
chemicals (Shen et al. 2013). 

 Estrogenic data for ~ 2,000 chemicals from the METI (Ministry of Economy, Trade and Industry, Japan) 
database (METI 2002). 

 Estrogenic data for ~ 2,000 chemicals from ChEMBL database (Gaulton et al. 2012). 

The full data set consisted of > 60,000 entries, including binding, agonist, and antagonist information for ~ 
15,000 unique chemical structures. For the purpose of this project, this data set was cleaned and made more 
consistent by removing in vivo data, cytotoxicity information, and all ambiguous entries (missing values, 
undefined/nonstandard end points, and unclear units). Only 7,547 chemical structures from the experimental 
evaluation set that overlapped with the CERAPP prediction set, for a total of 44,641 entries, were kept and 
made available for download on the U.S. EPA ToxCast™ Data web site 
(https://www3.epa.gov/research/COMPTOX/CERAPP_files.html, EvaluationSet.zip) (U.S. EPA 2016). The non-
CERAPP chemicals were excluded from the evaluation set (see “Chemical Structure Curation” section). Then, 
all data entries were categorized into three assay classes: (a) binding, (b) reporter gene/transactivation, or 
(c) cell proliferation. The training set end point to model is the ER model AUC that parallels the corresponding 
individual assay AC50 values, and therefore all units for activities in the experimental data set were converted 
to μM to have approximately equivalent concentration–response values for the evaluation set. Chemicals with 
cell proliferation assays were considered as actives if they exceeded an arbitrary threshold of 125% 
proliferation. For entries where testing concentrations were reported in the assay name field, those values 
were converted to μM and considered as the AC50 value if the compound was reported as active. All inactive 
compounds were arbitrarily assigned an AC50 value of 1 M.” 

 

https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1510267?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed#r68
https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1510267?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed#r52
https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.1510267?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed#r27


7.7 Predictivity – Statistics obtained by external validation 

According to Mansouri et al. supplementary material S3 (Sensitivity taken from “SN allPar Literature”, and 
specificity taken from “SP SllPar Literature”, numbers for TP, TN, FP and FN not given), the following statistics 
were found for the original DTU LPDM v.3.1.1-10 CERAPP model: 

- Sensitivity: 76.4% 
- Specificity: 93.2% 
- BA: 84.8% 

 

7.8 Predictivity – Assessment of the external validation set 

From Mansouri et al. 2016:  

“The performance of most models showed a clear improvement of 0.05 to 0.1 on the BA after applying all 
the filters on the literature data to keep only the unambiguous chemicals. We believe that this effectively 
reduced the uncertainty of the literature sources. This step also highlighted differences between ToxCast™ 
and the literature data and confirmed the existence of uncertainty in the literature data. Uncertainty and 
data discordance was also reported in literature review of in vivo uterotrophic bioassays (Kleinstreuer et al. 
2015).” 

 

7.9 Comments on the external validation of the model  

As noted above, the results reported in section 7 origin from the evaluation (not validation) of the DTU 
original CERAPP LPDM model developed in version 3.1.1-10. External validation was not performed on the 
LPDM v.3.5 model.  

 

 

8. Mechanistic interpretation  

8.1 Mechanistic basis of the model 

The global model identifies structural features and molecular descriptors which in the model development 
was found to be statistically significant associated with effect. Many predictions may indicate modes of action 
that are obvious for persons with expert knowledge for the endpoint. 

 

8.2 A priori or posteriori mechanistic interpretation 

The identified structural features and molecular descriptors may provide basis for mechanistic interpretation.  

ER activation is a mechanistic endpoint related to a number of health outcomes. 

 

8.3 Other information about the mechanistic interpretation 

None 

 

 

 



9. Miscellaneous information 

9.1 Comments 

The model can be used to predict if a substance is an ER activator (i.e. has an ER activation score equal to or 
above 0.1) according to the network model based on the 18 ER pathway in vitro assays. 
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